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Scarring effects on tunneling in chaotic double-well potentials
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The connection between scarring and tunneling in chaotic double-well potentials is studied in detail through
the distribution of level splittings. The mean level splitting is found to have oscillations as a function of energy,
as expected if scarring plays a role in determining the size of the splittings, and the spacing between peaks is
observed to be periodic of periodsz in action. Moreover, the size of the oscillations is directly correlated
with the strength of scarring. These results are interpreted within the theoretical framework of Creagh and
Whelan. The semiclassical limit and finiteeffects are discussed, and connections are made with reaction
rates and resonance widths in metastable wells.
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I. INTRODUCTION

Many chemical reactions must proceed through a poten-
tial barrier before the final dissociation of the products of the
reaction can take place. Thus, the reaction rate is governed
by tunneling[1]. Radioactive decay of nuclei also involves
crossing a potential barrier, dictated by a combination ofThe parametersy, a, X\, b;, X;, Y;i, ando; will be specified
short-ranged strong binding forces and a longer-ranged Colbelow. Forx3>0, a barrier along thg axis separates the
lomb repulsion[2]. A typical experimental situation is the potential at low energiesg§<0) into two wells. Thexx?y?
absorption of a slow neutron; the resulting metastablderm ensures that the potential is not separable, while the
nucleus decays predominantly by tunneling through a saddiaussian perturbations, the parameters of which may be
point, and the distribution of resonance widths is well de-changed at will, allow us to generate an ensemble of statis-
scribed by random matrix theofi3]. Another important ex-  tically independent eigenstates near any given energy. If the
ample of quantum tunneling is the conductance of mesoPOsitions and heights of the Gaussians are chosen suitably,
scopic deviceg4]. In more than one dimension, when the the potential has reflection symmetries in thandy direc-
classical dynamics can be chaotic, quantum chaos plays #nS- The symmetry under reflection jnmeans that there
role. For instance, in the tunneling diode junction, in WhichWIII always be a short periodic orbit on theaxis, in each of
electrons are driven by an applied electric field but muslthe two wells. I o :
tunnel through potential barriers at either end of the device a;hazt%gizgegeggét'gge(ﬁ fﬁ:rég‘rgcgn';?;igtﬁrﬁu‘;vﬁ :‘Eﬁc-
the dynamics, in the presence of a magnetic field, is chaotiE

and scarring of a short periodic orbit is known to dominate fon amplitude near short unstable periodic orbits, above
9 P what would be statistically expected in random matrix theory

the conductiori5]. In this paper we study chaotic tunneling (see Ref[12]). In the original work of Heller6] scarring

in a simple model pot(_antial, and establis_h the connection Qvas defined guantitatively using the overlap of eigenfunc-
scar theory, both qualitatively and quantitatively. We prefer;ong with a Gaussian wave packet centered on the periodic
to study tunneling by calculating splittings in a double-well orpit, So defined, the strength of the scarring effect scales as
potential rather than resonance widths in a metastable Welb(l/)\) where\ is the instability exponent of the periodic
because the former is an easier computational task, as Wgpit in question. In the work of Kaplan and Hellgf] dif-

will see later in Sec. II. The relation between splittings in afering quantitative measures of scarring were discussed in
double-well potential and resonance widths in a metastablgetail and it was shown that an optimal measure can be con-
well will be discussed immediately below, where we will structed by superposing Gaussian wave packets that have
observe that the two quantities are related by known overalbeen evolved with the linearized dynamics around the peri-

V(x,y)=x*—x5x2+ay?+ Ax%y?

+ 2, by expl—[(x—x)2+(y—y)?a?}. (1)

normalization factors. odic orbit. This optimal measure is able to detect the influ-
The double-well potential we will work with, in two di- ence of a short periodic orbit on eigenstates with greater
mensions, has the very simple form sensitivity than a simple Gaussian wave packet; however for

the straightforward purpose of identifying the presence of
scarring either measure is sufficient in most cases. Therefore
*Electronic address: bies@fas.harvard.edu in this paper we use the standard Gaussian wave packet of
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[6], for which analytical predictions of scar strength are easi-axis, which has the smallest action integ&lThe splitting
est to obtain. We note also that scarring is by definition aA E will then be proportional to the exponential facerS”.
statistical phenomenofi2] and refers to the way in which The correct generalization of the frequency of attempts to
the distribution of eigenstate intensities on a given orbit cross the barriek to two or more dimensions is the fre-
changes as a function of energy, stability exponent, and othjuency with which one returns to a Planck-sized cell in
parameters; thus scarring should be considered as concephase space that lies on the horizontal periodic orbit. This
ally distinct from the direct evaluation of eigenvalues, eigen-horizontal periodic orbit is the real continuation of the least-
functions, and matrix elements using long-time semiclassicahction path across the barrier. The time for returning to such
analysis. a cell (or to any other cell in an ergodic wglk the Heisen-
The principal result of this paper is that the size of theberg t|meTH:h/A(E), WhereA(E) is the mean level spac-
level splittings in the two-dimensional double well, the clas-ing near energf (i.e., the spacing between doublets in the
sical dynamiCS of which is ChaOtiC, is direCtly correlated with double-well System Then the frequency of attempts to cross
the scarring of eigenfunctions along theaxis, which we the barrier is just proportional to the mean level spacing
believe to be the primary channel for tunneling. The evi-A(E). Thus, we expect on general grounds that the splitting
dence for this is given as follows AE is given in order of magnitude bgE~A(E)e™ S(B)A
(1) The distribution of splittings, once the average expo-which gives us the trend of the splittings as a function of
nential trend in energy is scaled out, displays oscillations agnergy. This expression for the mean splitting will be con-
a function of energy of the sort expected by scar theory. Ifjrmed by the exact semiclassical theory to be discussed be-
particular, the action distance between successive peaks |isy.
preciselyh. However, the dependence of the mean splitting  For any given state, we should expect that its splitting will
on action is not completely reproduced quantitatively by lin-pe |arge or small compared with the mean value at that en-
ear scar theory, because nonlinear effects appear to be ilgrgy according to whether its amplitude is large or small on
portant. the horizontal periodic orbit that leads to optimal tunneling.
(2) The rescaled splittings are strongly correlated with theror simplicity we can study the wave function amplitude
overlap of the eigenstate with a Gaussian test state lying Ofear the turning point of the horizontal periodic orbit. The
the periodic orbit on the axis, the original measure of scar- ygjye of the wave function at the turning point in the two-
rng. dimensional chaotic system {gnoring scar-related effects
(3) The correlation of the splittings with the overlaps is that are the main focus of this papeiven approximately by
further supported by the fact that the distribution of overlaps; Gaussian-distributed random variable, as random matrix
has the same energy-dependent oscillations as the distribt.heOry would predict. Thus4¢(xtp)|2 has, according to ran-
tion of splittings. _ _ ~ dom matrix theory, a Porter-Thomas distribution for all en-
According to one-dimensional WKB theory, the splitting ergies far enough below the barriérear zero energy the
AE=Eanii-symni~ Esymm I @ symmetric double well is given horizontal periodic orbit becomes stable and the distribution
in the semiclassical limit by of splittings rolls over to one having many more large and
small splittings, corresponding to wave functions that live
2) near or avoid this stable orpitHowever, what is relevant to
tunneling ind dimensions is not just the value of the wave

. _ function exactly at the turning point but rather its behavior in
while the resonance width for the state at the same energy a whole %9~ *-sized region surrounding the periodic orbit.

e*S/h

hw
AE=(—
T

in a metastable well is We shall see below that the right quantity to consider is the
inner product of the wave function with a Gaussian centered
— h_“’ —25/h on the periodic orbitat the turning point or at some location
I'= e . 3 o . . .
41 inside the classically allowed regipnThis has as well a

_ _ o _ Porter-Thomas distribution, within the random matrix theory
Here w is the frequency of the classical periodic motion atapproximation. Scar-related effects and firfiteeffects on
energyEqymm and the imaginary action for going under the the distribution of splittings will be discussed below.

barrier is The viewpoint summarized above is in agreement with
the theoretical work of Creagh and Whelf®l. First, they
_ [ NS find that the mean splittingAE) at a given energy is given
S thde Vx)—E, @ by the product of an exponential facter 5%, a factor pro-

portional to the mean spacing between doublets, as described

Xip=>0 being the position of the classical turning point atabove, and a third factor that carries information about the
energy Eqymm [8]. In order for the semiclassical theory to monodromy matrix of théimaginary time tunneling orbit.
apply, Esymm must be sufficiently far below the barrier that Then they show that, for chaotic and symmetric double
S/A>1. Note the factor of 2 in the exponent in ES). wells, the splitting for a particular eigenvalue, relative to the

These one-dimensional formulas may be generalized tean splitting, may be written in the semiclassical limit as a
the two-dimensionalor higher-dimensionalpotential well — matrix element of the wave functiop near the real continu-
as follows. We expect tunneling in the semiclassical limit toation R of the complex trajectory that passes through the
be dominated by paths that cross the barrier close tocthe barrier with minimum(imaginary action. This imaginary-
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time trajectory and its real-time continuation may be thoughtnsures that the final Hamiltoniad=K,+K,+V will be
of as the optimal route for tunneling. The matrix elementitself also block diagonal. The four symmetry classes may
AE~(|T|) involves integration over a Poincaseirface  therefore be analyzed separately. In the basis chosen the po-
transverse to the real continuati@ The kernelZis a semi-  tential V is of course diagonal, while, in two or more dimen-
classical Green'’s function that, in the approximation that thesions, the kinetic energy matrix will be sparse. More pre-
dominant contribution to the tunneling matrix element comegisely, if N is the dimension of one of the blocks in the
from the neighborhood ok, becomes a Gaussian centeredHamiltonian matrix, the total number of nonzero matrix en-
on the intersection oR with the Poincaresection. The width  tries scales abl** 1, or N¥2in the two-dimensional system.
of the Gaussian is 0D(%#9) in both directionse.g.,y and  Since we require large values Mfin order to observe semi-
py) tangent to the surface of sectioifhe results may of classical behavior, a sparse matrix routine is the method of
course be easily generalized to dimensidns2, where the choice for diagonalizingd. The accuracy of the computed
resulting Gaussian has width 6f(#%?) in all 2d—2 direc- eigenvalues was tested for convergence under increase of
tions along the surface of sectign. and for the parameters given below we found convergence to
In the case that the real continuatihhappens to lie on =10"'? for N~3500, corresponding to about 200 Gauss-
a short periodic orbit, which will always be true when a Hermite functions in the< direction and about 100 in the
reflection symmetry across theaxis is present, this matrix direction.
element may be regarded as an alternative measure of scar- The amount of phase space covered by the regierD,
ring on the periodic orbit. The Creagh-Whelan theory pre-and thus the number of states under the barrier and the com-
dicts, therefore, that strong scarring should be correlategutation time, increases very rapidly with. If all other
with large splittings, confirming the intuitive expectation that parameters in the Hamiltonian are kept fixed, the number of
high tunneling rates should occur for those wave functionstates grows axg, and so the largest value af, we can
that have large amplitude along the path with optimal tun-easily attain is abouxy,=6, for a=1 and\=10. At these
neling. Neither in Ref[9] nor in Ref.[10], however, do the parameter values, each well has a depthxdi#i=324 and
authors demonstrate the connection between scafidsg about 100 bound states, whérés taken to be unity here and
originally defined and eigenvalue splittings on a state-by- in the following. The typical level spacing near the top of the
state basis. In the latter work, they confirm their formula forwell is ~1, and the splittings range from 1 near the top of
the tunneling matrix element by deriving from it an analyti- the well to< 10 ® nearE = — 50; below this energy many of
cal prediction for the statistical distribution of splittings. This the splittings become too smalk(10 % to be resolved

prediction is in good agreement with numerical calculationshumerically. Therefore we take= — 50 to be the lower cut-
for potentials in which the real continuation of the optimal off for the energies to be analyzed in Sec. III.

tunneling orbit isnota periodic orbit; when it is, the random-
matrix assumption in their derivation breaks down due to
scarring on this periodic orbit. Thus, the present paper, while
confirming the predictions of Creagh and Whelan, goes be- The potential given by Eq(l), apart from the Gaussian
yond their results by establishing conclusively the link be-perturbation, is mostly integrable for all energies except
tween scarring and tunneling and by showing, with bettethose near the top of the barrier. When the Gaussian pertur-
statistics, that the distribution of scaled splittings indeed bebations are introduced, the classical mechanics becomes
comes approximately Porter-Thoméer a sufficiently un-  more chaotic, but if these perturbations are too small it is still
stable complex orbj but only after scarring effects have possible that they would not be seen by the quantum me-
been removed. chanics, which would remain effectively integrable. Thus, in
order to render the quantum mechanics at energies corre-
sponding to the bound states chaotic as well, it is necessary
to introduce a Gaussian perturbation that is at least as large
The wave functions and splittings were calculated nu-as the wavelength in question, and whose height is compa-
merically using the discrete variable representafiid]. The  rable in magnitude to the depth of the potential well. The
matrix elements of the position operatdtsindY and of the  simplest choice is to place large Gaussian perturbations
kinetic energy operatons, andK, were first evaluated ana- above the minima of the potential well att§o/+/2,0),
lytically using standard identities, in a basis of up to the firstwhich will be seen by every bound trajectory as it crosses the
300 Gauss-Hermite functions in each dimension. Then, ircenter of the well and which thus effectively makes the dy-
order to take advantage of the two reflection symmetries in namics chaotic at energies down to the lowest considered
andy, the two operatorX? and Y? were diagonalized. The (E=—50). This was checked classically by examining the
reason for using(®> and Y? instead of the usual choice &f  Poincaresurfaces of section and may also be seen to be true
andY is that X2, K,, Y2, and K, are all block diagonal, quantum mechanically in Fig. 1, where typical eigenfunc-
connecting only basis elements within one of the four sym+ions are shown. Here, we have chosen the parameters of the
metry classes(even-even, even-odd, odd-even, and odd-double-well potential to b&,=6, a=1, and\ =10, and for
odd). Since we are interested only in even-even potentials ofthe central Gaussian perturbation we use a héaght50[to
the formV(X,Y)=2;f;(X?)gi(Y?) we can just as well com- be compared with a well depth &f(*x,/2,0)= —324]
puteV at the eigenvalues 02 andY? as at those oK and  and a widtho=0.5.
Y, but using the basis obtained by diagonalizkgand Y? We generate an ensemble of 625 systems by placing four

IIl. RESULTS

IIl. METHOD
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FIG. 2. Contour plot of the potential for a typical member of the
ensemble. The perturbationat +2,y==*1 leads to a symmetri-
cal distortion of the contours, which would be more rounded in the
absence of a perturbation. The contours range fvoa— 300 near

' the bottom of the potential td= + 200 above the top of the barrier.

(Note that all quantities are dimensionless in this and subsequent

Wy,

n L (b) not too large compared to (in the latter limit, scar effects
“' must go to zero in accord with the Schnirelman ergodicity
‘ theoren(15]). In fact, in the data presented below the area of
‘ the Creagh-Whelan Gaussian ranged fromhli® 4h. The
prediction of scar theory is that, at a given energy, the dis-
tribution of splittings should be Porter-Thoméet least as
long as the complex “instanton” orbit tunneling through the

FIG. 1. Typical eigenfunctions for the double-well potential in barrier is sufficiently unstablgl0]), and that the mean wave
the (a) near-integrable case without Gaussian perturbati@hs, function intensity and therefore the mean splitting should
=—11.055, and(b) chaotic case with Gaussian perturbatioBs, oscillate as energy is varied by an amount that depends on
=—12.063. Only one side of the well is shown in each case, withihe Lyapunov exponent and the monodromy matrix of the
the x axis running horizontally from-6 to 0 and they axis verti-  rga| unstable periodic orbit. An important confirmation of the
cally from —2 to 2. The barrier is located on the right sidexat scarring picture is obtained when we plot, in Fig. 5, the re-
=0. scaled splittings versus the actiddivided by 27) of the
further Gaussiangand their reflections ik andy) at x ~ horizontal periodic orbit at the energy eigenvalue. We find
=+2+3+4+5, and y=+1, with heights b;=20n;, that the oscillations are periodic in action with period,2
Ny, ...,ns=1,...,5 andwith equal widthso;=0.5 as Which indicates that the scar quantization condition for scar-
above. A contour plot of the potential for a typical memberfing holds. This quantization condition for the action reads
of the ensemble is given in Fig. 2; note the symmetrica®=2m(n+1/2+n,/4) wheren is an integer and. is the
distortion of the contours due to the perturbation.

We proceed to analyze statistically the splittings between 2 T T T T T T T T T
states in the even-even and even-odd sectors. The results, fi
the parameters described, are given in Figs. 3 and 4. A
expected, the size of the splittings falls off exponentially
with decreasing energy in Fig. 3, as the barrier becomes
wider and tunneling is suppressed. The trend is approxi-s
mately linear on a semilog plot, over six decade&asries £
from 0 to —50. In Fig. 4 we rescale the splittings as a func-
tion of energy bys—s/e ). We find very pronounced
oscillations in the distribution of splittings as a function of
energy. As discussed in Sec. |, we expect theoretically tha
the rescaled splitting should be proportional to the overlap in
a Poincaresection of the eigenfunction with a Gaussian on
the horizontal periodic orbit. If the Gaussian may be as-
sumed to have area exactlyin the Poincaresection, such
overlaps are described by scar theptp—14. We expect
the results to be qualitatively the same even if the Gaussian FIG. 3. Level splitting versus enerdy for the 15195 eigen-
in the Poincaresection given by the theory of Creagh and states betweeE=0 andE=—50 in the ensemble of 625 double-
Whelan is not a minimum-uncertainty state, as long as it isvell potentials described in the text.

log(splitti
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rescaled splittings
log(rescaled splitting)
w
T

log(overlap)

FIG. 4. Rescaled level splitting versus enefggs in Fig. 3. FIG. 6. Rescaled level splitting versus the overlap of the eigen-
state with a Gaussian on the horizontal periodic orbit, with eigen-
number of conjugate points in one period of the orbit ( states as in Fig. 3.
=3 in the case of the horizontal orbit in our sysjem
A direct correlation between splittings and scarring issemiclassical limit predicts that the short-tif@mmooth en-
found by plotting, in Fig. 6, the rescaled splitting of eachvelope describing the oscillations in the mean rescaled split-
eigenvalue versus the overlap of the corresponding eigeriing versus action is given by the Fourier transform of the
function with a Gaussian test state lying on the horizontahutocorrelation functionA(m)={¢|#(m)), where ¢ is a
periodic orbit, a measure of the degree with which this eigenGaussian wave packéliving in the Poincaresection cen-
function is scarred. The two quantities are correlated, with @ered on the horizontal periodic orbit ag{m) is its iterate
slope of 2 on a log-log scale. The correlation coefficient ofafterm bounces. The Gaussiahis chosen to have the same
the logarithms is 0.78; it may be that the degree of correlaerientation and aspect ratio in thg,p,) plane as the Gauss-
tion would be improved if the Gaussian were chosen to béan called for by the Creagh-Whelan theory, but linearly res-
properly aligned with respect to the monodromy matrix ofcaled so as to have arbaas needed for scar theory. Linear-
the optimal tunneling path. The observed correlation neverizing the dynamics around the horizontal periodic orbit we
theless confirms that there is a direct connection, on a statéind, when the Gaussian wave packet is optimally aligned
by-state basis, between scarring and tunneling, as predictedong the stable and unstable manifolds of the periodic orbit,
by the theory of Creagh and Whelg®)]. As a check on our

results, we show in Fig. 7 that the overlaps display the same 1

energy-dependent oscillations as do the splittings, as they A(m)= —, (5
must if the phenomenon of scarring underlies the behavior of ycoshhm

both.

The connection between scarring and tunneling can b#here\ is the Lyapunov exponent of the periodic orbit. In
tested quantitatively in two ways. First, scar theory in thethe special case of orthogonal stable and unstable manifolds,
a circular Gaussian will be one example of an optimally

2 T T T T T T T T T T

18 i 0.4
1.6 - 0.35
1.4 -
0 0.3
g 12 . .
£ i 0.25
] a B
9 - =
s 08 5 02
g 06 i g |
04 | 0.15
02 . 0.1
O -
0.05
_02 1 1 1 1 1 1 1 1 1 1
165 17 175 18 185 19 195 20 205 21 215 22 0
rescaled action .
. . . . E
FIG. 5. Rescaled level splitting versus actiom/®vith eigen-
states as in Fig. 3. FIG. 7. Overlap versus enerdy, with eigenstates as in Fig. 3.
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FIG. 8. Mean rescaled splitting/(s) versus action/z, data FIG. 9. Distribution of rescaled splittings for numerical data

points; short-time envelope from scar theory using B, solid  with o=0.5, solid histogram; numerical data with=0.63, dashed
line; short-time envelope from scar theory using E5), dashed  histogram; Porter-Thomas distributi¢without correction for finite

line. #, see Fig. 1}, dashed line.
aligned wave packet. If the Gaussian is not optimallypeak height on energy observed in the numerical data. Nev-
aligned, this formula may be generalized as follows: ertheless, we see that not only is scarring associated with
larger splittings in the coarse sense of Fig. 6 but also the
A(m)=2\/ de(M) 6) enhancement factor in the distribution of splittings, as a
defM+(J"™™™MJI™ ™’ function of energy or of action, does oscillate with energy or

action in agreement with the analytical predictions of scar
where M describes a Gaussian of the form consttheory; only the precise magnitude of these oscillations re-
X exp(—x"Mx) with x:(y,py)T representing the coordinates mains unexplained within the present linear theory. Creagh
in the surface of section, antis the Jacobian of the Poin- and Whelan have showi6] that oscillations such as those
care mapping evaluated at the periodic orbit (Tr in Fig. 6 can be understood quantitatively in periodic orbit
=2cosh\). The matrixM is computed as specified in the theory at small (i.e., by including classical periodic orbits
Creagh-Whelan theory from the monodromy matrix of thebeyond the horizontal boungefurther theoretical work on
complex orbit that begins at the Poincaetion on the right, the side of scar theory would thus be desirable in order to
goes through the barrier, and ends at the Poinsaction in  connect its predictions with those of periodic orbit theory. If
the left well[9]. Here, the Lyapunov exponehtand Jaco- we were working at smallet we presume that the linear
bian J vary with energy over the range 50<E<-—9. At  scar theory and periodic orbit theory would converge.
higher energies, the trajectory spends less time near the large A second quantitative test of scar theory in relation to
Gaussian bump placed at the center of the well, and thutinneling is to examine the change in the distribution of
experiences less deflection, leading to greater stability, eversplittings upon change in the Lyapunov exponent. The hori-
tually becoming stable foE> —9. The short-time envelope zontal periodic orbit can easily be made more stable by keep-
obtained as the Fourier transform A{m) in either Eq.(5) ing the height of the main Gaussian bump fixed at 150 while
or Eqg.(6) may be compared with the mean rescaled splittingncreasing its width. An ensemble of eigenstates and associ-
plotted versus action. As shown in Fig. 8, with either form ofated splittings was computed, just as above, for a larger
the autocorrelation function we do find peaks in the predictedralue of the bump width, namely 0.63 instead of 0.50. The
envelope of splittings at the right values of action for ener-expectation from scar theory would be for the distribution of
gies E<—9 (for energiesE>—9 the horizontal periodic splittings to have many more smaller and larger splittings at
orbit becomes stable, so the scar theory does not apply aride resulting smaller Lyapunov exponent. &t=0.5, the
no prediction about the distribution of splittings can behorizontal periodic orbit is stable down 8= —9.1; the
made, but the heights of the maxima and minima betweenLyapunov exponent then increases from zero with decreasing
the peaks are not well reproduced. The contrast predicted bynergy to a value ok =2.0 atE=—50. Foroc=0.63 it is
Eqg. (6) is closer to the numerical data than that predicted bystable all the way down t&E=—49.8 and attains only a
Eq. (5). The gquantitative failure of semiclassical scar theoryvalue ofA=0.11 atE= —50. The numerical data, however,
is attributable to the fact that, for our parameter values, th&how no marked difference between the two computations at
linearizable region around the horizontal periodic orbit is noto=0.5 ando=0.63; see Fig. 9. The lack of a significant
large compared td. In fact, the size of the linearizable re- difference between the distributions of splittings despite the
gion is only about 0.115 for the energies considered. Its size, difference in stability is an indication that we are not yet far
however, is approximately independent of energy 880  enough into the semiclassical linfitee discussion belowin
<E<O0, and this may explain the weak dependence of théoth cases the distribution of rescaled splittiigse the his-

016204-6



SCARRING EFFECTS ON TUNNELING IN CHAQTIC.. .. PHYSICAL REVIEW B4 016204

tograms in Fig. 9has many more small and large splittings, 2 . .

and consequently fewer splittings arous{s)=1, than a 18 .
Porter-Thomas distribution would havexcept for the sharp 16 F F i
cutoff ats/(s)=5, which will be discussed belowThus, the 14l ; B i

prediction of scar theory that there should be many more
small and large splittings, relative to the prediction of ran-
dom matrix theory, is confirmed. The deviation of Fig. 9
from a Porter-Thomas distribution is manifest both for
s/(sy>1 ands/(s)<1 (remembering that we are looking at
a log-log plo}. Also, the divergence of the probability dis- 04 |
tribution near zero splitting in the case of scarring on the real  ,
continuation of the optimal tunneling path differs markedly
from the results, both analytical and numerical, of Creagh

ng

rescaled splitti
(=]
[e+]
T

and Whelar[10] for the case when the real continuation is 2~ ; e 5 Py 5 a5
not a periodic orbit, which show a probability distribution ' mean level spacing '
tending to zero at zero splittinggvhen the finite stability of

the instanton orbit is taken into accoun®ur numerical re- FIG. 10. Plot of rescaled splittindE/e”® versus mean level

sults for the scarring case improve on their statistics angpacingA.
allow us to discern the scar corrections to Porter-Thomas

behavior. In particular, we note the excess of very smallion intensity measured using a Gaussian on the periodic
sphttmgs; thege c_orrespond.to the phenomenon of antiscagypyit will be enhanced by a factor @(1/\) compared with
ring, as seen in Fig. 5 at actions half-way between values of,4 naive expectation, whekeis the Lyapunov exponent. At

ggg?r?ng'vzrs' t;)t/ut;]ieez dscbar %:arllgée;t]lori\ncgzdgloen for me,‘tx'malenergies for which antiscarring, a tendency to avoid the hori-
9- y Kap ’ PeN quantum . qiq) periodic orbit, takes place, this typical intensity will
system coupled to the environment by one channel Iocateée stronalv suporessed by an amount that is exponentiall
on a short unstable periodic orbit, antiscarring causes the I )\gfy pp”)\ Th yt | distributi f1h b led y
probability to remain in the system at times large compare maftina for SrQa - The actual distribution ot the rescale
versus the level spaciny(E) includes the

to the Heisenberg time to be substantially enhanced relativaP!Iting AE/e~ L R
to the prediction of random matrix theory. Therefore, weSame energy-dependent oscillations seen in Fig. 4, as a func-

must expect that antiscarring, which we have demonstrateton of A(E) rather than of itself. It is evident, then, that
now for the case of level splittings in a smooth chaoticChaotic tunneling in two dimensions must be thought of as a
double-well potential, would markedly alter, away from ran- quantum-coherent phenomenon, in which the probability of
dom matrix theory predictions, the distribution of resonancelunneling through the barrier is greater if one comes back in
widths in a chaotic metastable potential, and also the longphase when making repeated attempts to cross the barrier, as
time probability to remain in such a well. happens for scarred eigenfunctions. We also note that the

At this point we must remark that in our analysis of the horizontal periodic orbit becomes more unstable at lower
rescaled splitting distribution we have used the Porterenergies, leading to smaller scar peaks in the mean wave
Thomas distribution as our baseline, thereby implicitly omit-function intensity on the orbit, and thus compensating to
ting the corrections associated with finite stability of the in-some extent for an increase in the mean level spacing at
stanton orbif10]. This approach is justified since in our case lower energies. This may partly explain the absence of a
the stability parameter is quite smal40.1 in the middle of ~clear trend in the data of Fig. 10.
the energy range We point out, however, that the leading  We now discuss how our data are limited by the fact that
effect of finiteX would be toreducethe expected number of we must work at finitez. First, the sharp cutoff at large
small splittings; the fact that we observe insteaceahance-  splittings in the numerical data relative to the Porter-Thomas
mentin the number of small splittings as compared with distribution in Fig. 9 is a finitgt effect. This can be under-
Porter-Thomas clearly means that antiscar effects dominattood as follows. Let the Poincasurface of section have
here, and also that these antiscar effects would be even moageaN in units of h. Then the expected squared over{ap
pronounced if compared with the full finite-prediction. of an eigenstate with a Gaussian test state will b¢, be-

In Fig. 10 we show the relation between the rescaled splitcause the test state covers an dréaphase space while the
ting AE/e” S and the mean level spacirg which decreases eigenstate is, on average, spread evenly over the entire phase
from about 3 atE=—50 to about 1 aE=0, with some space. Now the cutoff arises from the fact that no matter how
intermediate fluctuations. There is no direct correlation bescarred or otherwise localized the eigenstate is, its overlap
tweenAE/e S andA, thus refuting the intuitive expectation with a test state cannot be greater than unity.sSdl by
that the tunneling rate should be proportional only to the rateonstruction, os/(s)<<N. Thus the cutoff increases to infin-
of attempts to cross the barrier given by the classical motioniy in the semiclassical limiti.e., asf tends to zerp even
as discussed above in Sec. I. In the presence of scarring avhile (s) itself is decreasing. Assuming random matrix
the horizontal periodic orbit, tunneling is enhanced by thetheory, the modified form of the Porter-Thomas distribution
tendency to remain near the horizontal periodic orbit. At enfor finite N can be computed. One takes an ensemble of
ergies for which scarring takes place, the typical wave funcrandomly oriented vectors iN dimensions, normalizes them
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so they lie on the unit sphere, and také8mes the square of (extra splittings at large and smalks) with fewer splittings
thez component. This quantity has mean 1 and a sharp cutofiround s/(s)=1) relative to the modified Porter-Thomas
atN. The Porter-Thomas distribution is recovered in the limitdistribution are still present in Fig. 11.

N—oo. For an analytical form for the Porter-Thomas distri- A second test of the effect of finité is to repeat the
bution for finite N, see Brodyet al. in Ref.[18], especially calculation at different values df. Since we are near the
their Eq.(7.10. In Fig. 11 we see that the modified Porter- computational limit already, we consider only the case of
Thomas distribution foN=6, corresponding roughly to the larger 7. This is done by scaling the coordinates,y()
effective dimension of our Hilbert space, reproduces the cut—(x’,y’)=(cx,cy), 0<c<1. Under this transformation
off in the numerical data of Fig. 9. The scarring correctionsthe potential becomes

14 X2X/2 a 12 7\X,2 12
VX' Y= = e+ C4y + 20 by exp{—[(x' —ex) %+ (y' —ey) 2l (coy)?, )
|

while the kinetic energy remains effective value off, so the results for different values of the

effective?i (which scales as &) are directly comparable.
72 P For c=0.8 we find the same oscillations observed previ-
- (8) ously in the distribution of rescaled splittings as a function of

(9X/2 ay/Z

energy, only now there are four peaks in the range fibm

=—50 to E=0 compared to the five that we saw before,

since the momenta are not affected by the transformatiorEorresponding to a larger effective value %fin the new

The complete transformation of the Hamiltonian may be re-System. The distribution of splittings is given by the scarring

garded as the product of three transformatid¢ighe scaling corrections to the modified Porter-Thomas distribution for

of coordinates by a factor @2 and momenta by a factor of N=4 now, compared t&\=6 above. Thus, the same con-

¢~ 12 which does not change the quantum mechar(ics, clusions contmge Fo r_lold but with the expected modifications

scaling both coordinates and momenta by a common factdPr larger#. This indicates that at=1 we are far enough

of cY2while also replacing the Hamiltoniaa by cH, which |r}to the semlclassmal regime to see chara(_:terlstlc semlclas—

preserves the classical mechanics exactly but is not area préic@l behavior for the locations of the scarring peaks, if not

serving, and thus affects the quantum mechanics by changirfg" their precise heights.

the effective value ofi, and(iii ) scaling the Hamiltonian by

a factor of 1¢, which trivially rescales the spectrum back IV. CONCLUSIONS

into the original range. The reason we use this transforma-

tion is to keep the classical mechanics, all the periodic orbits, We have demonstrated that scarring on the real continua-

their stability properties, etc. unchanged as we change thiéon of the optimal tunneling path, if it is an unstable periodic
orbit, enhances tunneling and thus leads to larger splittings

100 : : : : between the symmetric and antisymmetricxireigenfunc-

3 tions at energies near the scarring enerdiggwise, anti-
scarring in between the scarring energies leads to smaller
splittings. The energy dependence of the distribution of
splittings displays quantization in action, and the shape of
the smooth envelope is roughly consistent with the predic-

10

T I tion of scar theory, though the magnitude of the oscillations

B 01 F E is not quantitatively predicted by the simple linearized dy-

= | namics; a better understanding of the shape of the envelope
0.01 |

4 would require extending scar theory to the nonlinear regime.
Also, the distribution of splittings is approximately Porter-
0.001 | ] Thomas with scarring corrections, as we would expect on the
basis of scar theory combined with the theory of Creagh and
T Whelan, discussed in Sec. I. We do not find, however, the
0.01 0.1 1 10 expected dependence on the Lyapunov exponent of the hori-
s/<s> zontal periodic orbit. This is presumably due to the fact that
our calculations do not probe very far into the semiclassical
FIG. 11. Distribution of rescaled splitings for the numerical limit, our well being only a few wavelengths across in the
data with 0=0.5, histogram; Porter-Thomas distribution with transversey() direction. Finite# effects cut off the far tail of
finite-fi correction forN=6, dashed line. the splitting distribution at all energies.

0.0001 . -l
0.0001 0.001
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According to Eqs(2) and(3), suitably generalized to the Lyapunov exponent large compared to unity the short-time
chaotic double-well potential in two dimensions as discusse@nvelope approaches the uniform limit of random matrix
in Sec. |, the rescaled resonance widths in a single metastabiigeory. However, as long as the sum of all instability expo-
well, the potential of which agreed with the double-well po- nents in directions transverse to the reaction coordinate does
tential we are using for<+Xx,/+/2, would have the same not become large, scarring effects are expected to appear,
distribution as the rescaled splittings we have computedust as in the two-dimensional case discussed in the present
Thus, our results imply a nonstatistical distribution of reso-paper.
nance widths in a chaotic metastable well. In view of its
importance for chemical physics, this conclusion deserves
further investigation. . . ACKNOWLEDGMENTS
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