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Scarring effects on tunneling in chaotic double-well potentials
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The connection between scarring and tunneling in chaotic double-well potentials is studied in detail through
the distribution of level splittings. The mean level splitting is found to have oscillations as a function of energy,
as expected if scarring plays a role in determining the size of the splittings, and the spacing between peaks is
observed to be periodic of period 2p\ in action. Moreover, the size of the oscillations is directly correlated
with the strength of scarring. These results are interpreted within the theoretical framework of Creagh and
Whelan. The semiclassical limit and finite-\ effects are discussed, and connections are made with reaction
rates and resonance widths in metastable wells.
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I. INTRODUCTION

Many chemical reactions must proceed through a po
tial barrier before the final dissociation of the products of
reaction can take place. Thus, the reaction rate is gove
by tunneling@1#. Radioactive decay of nuclei also involve
crossing a potential barrier, dictated by a combination
short-ranged strong binding forces and a longer-ranged C
lomb repulsion@2#. A typical experimental situation is th
absorption of a slow neutron; the resulting metasta
nucleus decays predominantly by tunneling through a sa
point, and the distribution of resonance widths is well d
scribed by random matrix theory@3#. Another important ex-
ample of quantum tunneling is the conductance of me
scopic devices@4#. In more than one dimension, when th
classical dynamics can be chaotic, quantum chaos pla
role. For instance, in the tunneling diode junction, in whi
electrons are driven by an applied electric field but m
tunnel through potential barriers at either end of the dev
the dynamics, in the presence of a magnetic field, is cha
and scarring of a short periodic orbit is known to domina
the conduction@5#. In this paper we study chaotic tunnelin
in a simple model potential, and establish the connection
scar theory, both qualitatively and quantitatively. We pre
to study tunneling by calculating splittings in a double-w
potential rather than resonance widths in a metastable w
because the former is an easier computational task, as
will see later in Sec. II. The relation between splittings in
double-well potential and resonance widths in a metasta
well will be discussed immediately below, where we w
observe that the two quantities are related by known ove
normalization factors.

The double-well potential we will work with, in two di-
mensions, has the very simple form
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V~x,y!5x42x0
2x21ay21lx2y2

1(
i

bi exp$2@~x2xi !
21~y2yi !

2#/s i
2%. ~1!

The parametersx0 , a, l, bi , xi , yi , ands i will be specified
below. Forx0

2.0, a barrier along they axis separates the
potential at low energies (E,0) into two wells. Thelx2y2

term ensures that the potential is not separable, while
Gaussian perturbations, the parameters of which may
changed at will, allow us to generate an ensemble of sta
tically independent eigenstates near any given energy. If
positions and heights of the Gaussians are chosen suita
the potential has reflection symmetries in thex andy direc-
tions. The symmetry under reflection iny means that there
will always be a short periodic orbit on thex axis, in each of
the two wells.

The standard definition of scarring in the literature of t
past two decades has been the concentration of wave f
tion amplitude near short unstable periodic orbits, abo
what would be statistically expected in random matrix theo
~see Ref.@12#!. In the original work of Heller@6# scarring
was defined quantitatively using the overlap of eigenfu
tions with a Gaussian wave packet centered on the peri
orbit. So defined, the strength of the scarring effect scale
O(1/l) wherel is the instability exponent of the periodi
orbit in question. In the work of Kaplan and Heller@7# dif-
fering quantitative measures of scarring were discusse
detail and it was shown that an optimal measure can be c
structed by superposing Gaussian wave packets that
been evolved with the linearized dynamics around the p
odic orbit. This optimal measure is able to detect the infl
ence of a short periodic orbit on eigenstates with grea
sensitivity than a simple Gaussian wave packet; however
the straightforward purpose of identifying the presence
scarring either measure is sufficient in most cases. There
in this paper we use the standard Gaussian wave pack
©2001 The American Physical Society04-1
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@6#, for which analytical predictions of scar strength are ea
est to obtain. We note also that scarring is by definition
statistical phenomenon@12# and refers to the way in which
the distribution of eigenstate intensities on a given orb
changes as a function of energy, stability exponent, and o
parameters; thus scarring should be considered as conc
ally distinct from the direct evaluation of eigenvalues, eige
functions, and matrix elements using long-time semiclass
analysis.

The principal result of this paper is that the size of t
level splittings in the two-dimensional double well, the cla
sical dynamics of which is chaotic, is directly correlated w
the scarring of eigenfunctions along thex axis, which we
believe to be the primary channel for tunneling. The e
dence for this is given as follows

~1! The distribution of splittings, once the average exp
nential trend in energy is scaled out, displays oscillations
a function of energy of the sort expected by scar theory
particular, the action distance between successive pea
preciselyh. However, the dependence of the mean splitt
on action is not completely reproduced quantitatively by l
ear scar theory, because nonlinear effects appear to be
portant.

~2! The rescaled splittings are strongly correlated with
overlap of the eigenstate with a Gaussian test state lying
the periodic orbit on thex axis, the original measure of sca
ring.

~3! The correlation of the splittings with the overlaps
further supported by the fact that the distribution of overla
has the same energy-dependent oscillations as the dist
tion of splittings.

According to one-dimensional WKB theory, the splittin
DE5Eanti-symm2Esymm in a symmetric double well is given
in the semiclassical limit by

DE5S \v

p De2S/\, ~2!

while the resonance widthG for the state at the same energ
in a metastable well is

G5S \v

4p De22S/\. ~3!

Here v is the frequency of the classical periodic motion
energyEsymm and the imaginary action for going under th
barrier is

S5E
2xtp

xtp
dxAV~x!2E, ~4!

xtp.0 being the position of the classical turning point
energyEsymm @8#. In order for the semiclassical theory t
apply, Esymm must be sufficiently far below the barrier th
S/\@1. Note the factor of 2 in the exponent in Eq.~3!.

These one-dimensional formulas may be generalized
the two-dimensional~or higher-dimensional! potential well
as follows. We expect tunneling in the semiclassical limit
be dominated by paths that cross the barrier close to thx
01620
i-
a

er
tu-
-
al

-

-

-
s
n
is

g
-
m-

e
n

s
u-

t

t

to

axis, which has the smallest action integralS. The splitting
DE will then be proportional to the exponential factore2S/\.

The correct generalization of the frequency of attempts
cross the barrierv to two or more dimensions is the fre
quency with which one returns to a Planck-sized cell
phase space that lies on the horizontal periodic orbit. T
horizontal periodic orbit is the real continuation of the lea
action path across the barrier. The time for returning to s
a cell ~or to any other cell in an ergodic well! is the Heisen-
berg timeTH5h/D(E), whereD(E) is the mean level spac
ing near energyE ~i.e., the spacing between doublets in t
double-well system!. Then the frequency of attempts to cro
the barrier is just proportional to the mean level spac
D(E). Thus, we expect on general grounds that the splitt
DE is given in order of magnitude byDE;D(E)e2S(E)/\,
which gives us the trend of the splittings as a function
energy. This expression for the mean splitting will be co
firmed by the exact semiclassical theory to be discussed
low.

For any given state, we should expect that its splitting w
be large or small compared with the mean value at that
ergy according to whether its amplitude is large or small
the horizontal periodic orbit that leads to optimal tunnelin
For simplicity we can study the wave function amplitud
near the turning point of the horizontal periodic orbit. Th
value of the wave function at the turning point in the tw
dimensional chaotic system is~ignoring scar-related effect
that are the main focus of this paper! given approximately by
a Gaussian-distributed random variable, as random ma
theory would predict. Thus,uc(xtp)u2 has, according to ran
dom matrix theory, a Porter-Thomas distribution for all e
ergies far enough below the barrier~near zero energy the
horizontal periodic orbit becomes stable and the distribut
of splittings rolls over to one having many more large a
small splittings, corresponding to wave functions that li
near or avoid this stable orbit!. However, what is relevant to
tunneling ind dimensions is not just the value of the wav
function exactly at the turning point but rather its behavior
a whole \d21-sized region surrounding the periodic orb
We shall see below that the right quantity to consider is
inner product of the wave function with a Gaussian cente
on the periodic orbit~at the turning point or at some locatio
inside the classically allowed region!. This has as well a
Porter-Thomas distribution, within the random matrix theo
approximation. Scar-related effects and finite-\ effects on
the distribution of splittings will be discussed below.

The viewpoint summarized above is in agreement w
the theoretical work of Creagh and Whelan@9#. First, they
find that the mean splittinĝDE& at a given energy is given
by the product of an exponential factore2S/\, a factor pro-
portional to the mean spacing between doublets, as descr
above, and a third factor that carries information about
monodromy matrix of the~imaginary time! tunneling orbit.
Then they show that, for chaotic and symmetric dou
wells, the splitting for a particular eigenvalue, relative to t
mean splitting, may be written in the semiclassical limit a
matrix element of the wave functionc near the real continu-
ation R of the complex trajectory that passes through
barrier with minimum~imaginary! action. This imaginary-
4-2
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time trajectory and its real-time continuation may be thou
of as the optimal route for tunneling. The matrix eleme
DE;^cuT uc& involves integration over a Poincare´ surface
transverse to the real continuationR. The kernelT is a semi-
classical Green’s function that, in the approximation that
dominant contribution to the tunneling matrix element com
from the neighborhood ofR, becomes a Gaussian center
on the intersection ofR with the Poincare´ section. The width
of the Gaussian is ofO(\1/2) in both directions~e.g.,y and
py) tangent to the surface of section.@The results may of
course be easily generalized to dimensionsd.2, where the
resulting Gaussian has width ofO(\1/2) in all 2d22 direc-
tions along the surface of section.#

In the case that the real continuationR happens to lie on
a short periodic orbit, which will always be true when
reflection symmetry across thex axis is present, this matrix
element may be regarded as an alternative measure of
ring on the periodic orbit. The Creagh-Whelan theory p
dicts, therefore, that strong scarring should be correla
with large splittings, confirming the intuitive expectation th
high tunneling rates should occur for those wave functio
that have large amplitude along the path with optimal tu
neling. Neither in Ref.@9# nor in Ref.@10#, however, do the
authors demonstrate the connection between scarring~as
originally defined! and eigenvalue splittings on a state-b
state basis. In the latter work, they confirm their formula
the tunneling matrix element by deriving from it an analy
cal prediction for the statistical distribution of splittings. Th
prediction is in good agreement with numerical calculatio
for potentials in which the real continuation of the optim
tunneling orbit isnot a periodic orbit; when it is, the random
matrix assumption in their derivation breaks down due
scarring on this periodic orbit. Thus, the present paper, w
confirming the predictions of Creagh and Whelan, goes
yond their results by establishing conclusively the link b
tween scarring and tunneling and by showing, with be
statistics, that the distribution of scaled splittings indeed
comes approximately Porter-Thomas~for a sufficiently un-
stable complex orbit!, but only after scarring effects hav
been removed.

II. METHOD

The wave functions and splittings were calculated n
merically using the discrete variable representation@11#. The
matrix elements of the position operatorsX andY and of the
kinetic energy operatorsKx andKy were first evaluated ana
lytically using standard identities, in a basis of up to the fi
300 Gauss-Hermite functions in each dimension. Then
order to take advantage of the two reflection symmetriesx
andy, the two operatorsX2 andY2 were diagonalized. The
reason for usingX2 andY2 instead of the usual choice ofX
and Y is that X2, Kx , Y2, and Ky are all block diagonal,
connecting only basis elements within one of the four sy
metry classes~even-even, even-odd, odd-even, and od
odd!. Since we are interested only in even-even potential
the formV(X,Y)5( i f i(X

2)gi(Y
2) we can just as well com

puteV at the eigenvalues ofX2 andY2 as at those ofX and
Y, but using the basis obtained by diagonalizingX2 andY2
01620
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ensures that the final HamiltonianH5Kx1Ky1V will be
itself also block diagonal. The four symmetry classes m
therefore be analyzed separately. In the basis chosen the
tentialV is of course diagonal, while, in two or more dime
sions, the kinetic energy matrix will be sparse. More p
cisely, if N is the dimension of one of the blocks in th
Hamiltonian matrix, the total number of nonzero matrix e
tries scales asN111/d, or N3/2 in the two-dimensional system
Since we require large values ofN in order to observe semi
classical behavior, a sparse matrix routine is the method
choice for diagonalizingH. The accuracy of the compute
eigenvalues was tested for convergence under increaseN,
and for the parameters given below we found convergenc
610212 for N'3500, corresponding to about 200 Gaus
Hermite functions in thex direction and about 100 in they
direction.

The amount of phase space covered by the regionE,0,
and thus the number of states under the barrier and the c
putation time, increases very rapidly withx0. If all other
parameters in the Hamiltonian are kept fixed, the numbe
states grows asx0

6, and so the largest value ofx0 we can
easily attain is aboutx056, for a51 andl510. At these
parameter values, each well has a depth ofx0

4/45324 and
about 100 bound states, where\ is taken to be unity here an
in the following. The typical level spacing near the top of t
well is ;1, and the splittings range from,1 near the top of
the well to,1026 nearE5250; below this energy many o
the splittings become too small (,10212) to be resolved
numerically. Therefore we takeE5250 to be the lower cut-
off for the energies to be analyzed in Sec. III.

III. RESULTS

The potential given by Eq.~1!, apart from the Gaussian
perturbation, is mostly integrable for all energies exce
those near the top of the barrier. When the Gaussian pe
bations are introduced, the classical mechanics beco
more chaotic, but if these perturbations are too small it is s
possible that they would not be seen by the quantum
chanics, which would remain effectively integrable. Thus,
order to render the quantum mechanics at energies co
sponding to the bound states chaotic as well, it is neces
to introduce a Gaussian perturbation that is at least as l
as the wavelength in question, and whose height is com
rable in magnitude to the depth of the potential well. T
simplest choice is to place large Gaussian perturbati
above the minima of the potential well at (6x0 /A2,0),
which will be seen by every bound trajectory as it crosses
center of the well and which thus effectively makes the d
namics chaotic at energies down to the lowest conside
(E5250). This was checked classically by examining t
Poincare´ surfaces of section and may also be seen to be
quantum mechanically in Fig. 1, where typical eigenfun
tions are shown. Here, we have chosen the parameters o
double-well potential to bex056, a51, andl510, and for
the central Gaussian perturbation we use a heightb5150 @to
be compared with a well depth ofV(6x0 /A2,0)52324]
and a widths50.5.

We generate an ensemble of 625 systems by placing
4-3
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further Gaussians~and their reflections inx and y) at x
562,63,64,65, and y561, with heights bi520ni ,
n1 , . . . ,n451, . . . ,5, andwith equal widths s i50.5 as
above. A contour plot of the potential for a typical memb
of the ensemble is given in Fig. 2; note the symmetri
distortion of the contours due to the perturbation.

We proceed to analyze statistically the splittings betwe
states in the even-even and even-odd sectors. The result
the parameters described, are given in Figs. 3 and 4.
expected, the size of the splittings falls off exponentia
with decreasing energy in Fig. 3, as the barrier becom
wider and tunneling is suppressed. The trend is appr
mately linear on a semilog plot, over six decades asE varies
from 0 to 250. In Fig. 4 we rescale the splittings as a fun
tion of energy bys→s/e2S(E). We find very pronounced
oscillations in the distribution of splittings as a function
energy. As discussed in Sec. I, we expect theoretically
the rescaled splitting should be proportional to the overlap
a Poincare´ section of the eigenfunction with a Gaussian
the horizontal periodic orbit. If the Gaussian may be
sumed to have area exactlyh in the Poincare´ section, such
overlaps are described by scar theory@12–14#. We expect
the results to be qualitatively the same even if the Gaus
in the Poincare´ section given by the theory of Creagh an
Whelan is not a minimum-uncertainty state, as long as i

FIG. 1. Typical eigenfunctions for the double-well potential
the ~a! near-integrable case without Gaussian perturbationsE
5211.055, and~b! chaotic case with Gaussian perturbations,E
5212.063. Only one side of the well is shown in each case, w
the x axis running horizontally from26 to 0 and they axis verti-
cally from 22 to 2. The barrier is located on the right side atx
50.
01620
r
l

n
for
s

s
i-

-

at
n

-

n

is

not too large compared toh ~in the latter limit, scar effects
must go to zero in accord with the Schnirelman ergodic
theorem@15#!. In fact, in the data presented below the area
the Creagh-Whelan Gaussian ranged from 1.5h to 4h. The
prediction of scar theory is that, at a given energy, the d
tribution of splittings should be Porter-Thomas~at least as
long as the complex ‘‘instanton’’ orbit tunneling through th
barrier is sufficiently unstable@10#!, and that the mean wav
function intensity and therefore the mean splitting sho
oscillate as energy is varied by an amount that depends
the Lyapunov exponent and the monodromy matrix of
real unstable periodic orbit. An important confirmation of t
scarring picture is obtained when we plot, in Fig. 5, the
scaled splittings versus the action~divided by 2p) of the
horizontal periodic orbit at the energy eigenvalue. We fi
that the oscillations are periodic in action with period 2p,
which indicates that the scar quantization condition for sc
ring holds. This quantization condition for the action rea
A52p(n11/21nc/4) wheren is an integer andnc is the

h

FIG. 2. Contour plot of the potential for a typical member of t
ensemble. The perturbation atx562,y561 leads to a symmetri-
cal distortion of the contours, which would be more rounded in
absence of a perturbation. The contours range fromV52300 near
the bottom of the potential toV51200 above the top of the barrier
~Note that all quantities are dimensionless in this and subseq
figures.!

FIG. 3. Level splitting versus energyE for the 15 195 eigen-
states betweenE50 andE5250 in the ensemble of 625 double
well potentials described in the text.
4-4
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number of conjugate points in one period of the orbit (nc
53 in the case of the horizontal orbit in our system!.

A direct correlation between splittings and scarring
found by plotting, in Fig. 6, the rescaled splitting of ea
eigenvalue versus the overlap of the corresponding eig
function with a Gaussian test state lying on the horizon
periodic orbit, a measure of the degree with which this eig
function is scarred. The two quantities are correlated, wit
slope of 2 on a log-log scale. The correlation coefficient
the logarithms is 0.78; it may be that the degree of corre
tion would be improved if the Gaussian were chosen to
properly aligned with respect to the monodromy matrix
the optimal tunneling path. The observed correlation nev
theless confirms that there is a direct connection, on a s
by-state basis, between scarring and tunneling, as pred
by the theory of Creagh and Whelan@9#. As a check on our
results, we show in Fig. 7 that the overlaps display the sa
energy-dependent oscillations as do the splittings, as
must if the phenomenon of scarring underlies the behavio
both.

The connection between scarring and tunneling can
tested quantitatively in two ways. First, scar theory in t

FIG. 4. Rescaled level splitting versus energyE as in Fig. 3.

FIG. 5. Rescaled level splitting versus action/2p with eigen-
states as in Fig. 3.
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semiclassical limit predicts that the short-time~smooth! en-
velope describing the oscillations in the mean rescaled s
ting versus action is given by the Fourier transform of t
autocorrelation functionA(m)5^fuf(m)&, where f is a
Gaussian wave packet~living in the Poincare´ section! cen-
tered on the horizontal periodic orbit andf(m) is its iterate
afterm bounces. The Gaussianf is chosen to have the sam
orientation and aspect ratio in the (y,py) plane as the Gauss
ian called for by the Creagh-Whelan theory, but linearly re
caled so as to have areah as needed for scar theory. Linea
izing the dynamics around the horizontal periodic orbit w
find, when the Gaussian wave packet is optimally align
along the stable and unstable manifolds of the periodic or

A~m!5
1

Acoshlm
, ~5!

wherel is the Lyapunov exponent of the periodic orbit.
the special case of orthogonal stable and unstable manifo
a circular Gaussian will be one example of an optima

FIG. 6. Rescaled level splitting versus the overlap of the eig
state with a Gaussian on the horizontal periodic orbit, with eig
states as in Fig. 3.

FIG. 7. Overlap versus energyE, with eigenstates as in Fig. 3
4-5
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aligned wave packet. If the Gaussian is not optima
aligned, this formula may be generalized as follows:

A~m!52A det~M !

det@M1~J2m!TMJ2m#
, ~6!

where M describes a Gaussian of the form con
3exp(2xTMx) with x5(y,py)

T representing the coordinate
in the surface of section, andJ is the Jacobian of the Poin
caré mapping evaluated at the periodic orbit (TrJ
52coshl). The matrix M is computed as specified in th
Creagh-Whelan theory from the monodromy matrix of t
complex orbit that begins at the Poincare´ section on the right,
goes through the barrier, and ends at the Poincare´ section in
the left well @9#. Here, the Lyapunov exponentl and Jaco-
bian J vary with energy over the range250,E,29. At
higher energies, the trajectory spends less time near the
Gaussian bump placed at the center of the well, and t
experiences less deflection, leading to greater stability, e
tually becoming stable forE.29. The short-time envelope
obtained as the Fourier transform ofA(m) in either Eq.~5!
or Eq.~6! may be compared with the mean rescaled splitt
plotted versus action. As shown in Fig. 8, with either form
the autocorrelation function we do find peaks in the predic
envelope of splittings at the right values of action for en
gies E,29 ~for energiesE.29 the horizontal periodic
orbit becomes stable, so the scar theory does not apply
no prediction about the distribution of splittings can
made!, but the heights of the maxima and minima betwe
the peaks are not well reproduced. The contrast predicte
Eq. ~6! is closer to the numerical data than that predicted
Eq. ~5!. The quantitative failure of semiclassical scar theo
is attributable to the fact that, for our parameter values,
linearizable region around the horizontal periodic orbit is n
large compared toh. In fact, the size of the linearizable re
gion is only about 0.15h for the energies considered. Its siz
however, is approximately independent of energy for250
,E,0, and this may explain the weak dependence of

FIG. 8. Mean rescaled splittings/^s& versus action/2p, data
points; short-time envelope from scar theory using Eq.~6!, solid
line; short-time envelope from scar theory using Eq.~5!, dashed
line.
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peak height on energy observed in the numerical data. N
ertheless, we see that not only is scarring associated
larger splittings in the coarse sense of Fig. 6 but also
enhancement factor in the distribution of splittings, as
function of energy or of action, does oscillate with energy
action in agreement with the analytical predictions of s
theory; only the precise magnitude of these oscillations
mains unexplained within the present linear theory. Crea
and Whelan have shown@16# that oscillations such as thos
in Fig. 6 can be understood quantitatively in periodic or
theory at small\ ~i.e., by including classical periodic orbit
beyond the horizontal bounce!; further theoretical work on
the side of scar theory would thus be desirable in orde
connect its predictions with those of periodic orbit theory.
we were working at smaller\ we presume that the linea
scar theory and periodic orbit theory would converge.

A second quantitative test of scar theory in relation
tunneling is to examine the change in the distribution
splittings upon change in the Lyapunov exponent. The h
zontal periodic orbit can easily be made more stable by ke
ing the height of the main Gaussian bump fixed at 150 wh
increasing its width. An ensemble of eigenstates and ass
ated splittings was computed, just as above, for a lar
value of the bump width, namely 0.63 instead of 0.50. T
expectation from scar theory would be for the distribution
splittings to have many more smaller and larger splittings
the resulting smaller Lyapunov exponent. Ats50.5, the
horizontal periodic orbit is stable down toE529.1; the
Lyapunov exponent then increases from zero with decrea
energy to a value ofl52.0 at E5250. For s50.63 it is
stable all the way down toE5249.8 and attains only a
value ofl50.11 atE5250. The numerical data, howeve
show no marked difference between the two computation
s50.5 ands50.63; see Fig. 9. The lack of a significan
difference between the distributions of splittings despite
difference in stability is an indication that we are not yet f
enough into the semiclassical limit~see discussion below!. In
both cases the distribution of rescaled splittings~see the his-

FIG. 9. Distribution of rescaled splittings for numerical da
with s50.5, solid histogram; numerical data withs50.63, dashed
histogram; Porter-Thomas distribution~without correction for finite
\, see Fig. 11!, dashed line.
4-6
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SCARRING EFFECTS ON TUNNELING IN CHAOTIC . . . PHYSICAL REVIEW E64 016204
tograms in Fig. 9! has many more small and large splitting
and consequently fewer splittings arounds/^s&51, than a
Porter-Thomas distribution would have~except for the sharp
cutoff ats/^s&>5, which will be discussed below!. Thus, the
prediction of scar theory that there should be many m
small and large splittings, relative to the prediction of ra
dom matrix theory, is confirmed. The deviation of Fig.
from a Porter-Thomas distribution is manifest both f
s/^s&.1 ands/^s&,1 ~remembering that we are looking a
a log-log plot!. Also, the divergence of the probability dis
tribution near zero splitting in the case of scarring on the r
continuation of the optimal tunneling path differs marked
from the results, both analytical and numerical, of Crea
and Whelan@10# for the case when the real continuation
not a periodic orbit, which show a probability distributio
tending to zero at zero splitting~when the finite stability of
the instanton orbit is taken into account!. Our numerical re-
sults for the scarring case improve on their statistics
allow us to discern the scar corrections to Porter-Thom
behavior. In particular, we note the excess of very sm
splittings; these correspond to the phenomenon of antis
ring, as seen in Fig. 5 at actions half-way between value
action given by the scar quantization condition for maxim
scarring. As studied by Kaplan@17#, in an open quantum
system coupled to the environment by one channel loca
on a short unstable periodic orbit, antiscarring causes
probability to remain in the system at times large compa
to the Heisenberg time to be substantially enhanced rela
to the prediction of random matrix theory. Therefore, w
must expect that antiscarring, which we have demonstra
now for the case of level splittings in a smooth chao
double-well potential, would markedly alter, away from ra
dom matrix theory predictions, the distribution of resonan
widths in a chaotic metastable potential, and also the lo
time probability to remain in such a well.

At this point we must remark that in our analysis of t
rescaled splitting distribution we have used the Por
Thomas distribution as our baseline, thereby implicitly om
ting the corrections associated with finite stability of the
stanton orbit@10#. This approach is justified since in our ca
the stability parameter is quite small (l'0.1 in the middle of
the energy range!. We point out, however, that the leadin
effect of finitel would be toreducethe expected number o
small splittings; the fact that we observe instead anenhance-
ment in the number of small splittings as compared w
Porter-Thomas clearly means that antiscar effects domi
here, and also that these antiscar effects would be even m
pronounced if compared with the full finite-l prediction.

In Fig. 10 we show the relation between the rescaled sp
ting DE/e2S and the mean level spacingD, which decreases
from about 3 atE5250 to about 1 atE50, with some
intermediate fluctuations. There is no direct correlation
tweenDE/e2S andD, thus refuting the intuitive expectatio
that the tunneling rate should be proportional only to the r
of attempts to cross the barrier given by the classical mot
as discussed above in Sec. I. In the presence of scarrin
the horizontal periodic orbit, tunneling is enhanced by
tendency to remain near the horizontal periodic orbit. At e
ergies for which scarring takes place, the typical wave fu
01620
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tion intensity measured using a Gaussian on the perio
orbit will be enhanced by a factor ofO(1/l) compared with
the naive expectation, wherel is the Lyapunov exponent. A
energies for which antiscarring, a tendency to avoid the h
zontal periodic orbit, takes place, this typical intensity w
be strongly suppressed by an amount that is exponent
small inl for smalll. The actual distribution of the rescale
splitting DE/e2S versus the level spacingD(E) includes the
same energy-dependent oscillations seen in Fig. 4, as a f
tion of D(E) rather than ofE itself. It is evident, then, that
chaotic tunneling in two dimensions must be thought of a
quantum-coherent phenomenon, in which the probability
tunneling through the barrier is greater if one comes back
phase when making repeated attempts to cross the barrie
happens for scarred eigenfunctions. We also note that
horizontal periodic orbit becomes more unstable at low
energies, leading to smaller scar peaks in the mean w
function intensity on the orbit, and thus compensating
some extent for an increase in the mean level spacing
lower energies. This may partly explain the absence o
clear trend in the data of Fig. 10.

We now discuss how our data are limited by the fact t
we must work at finite\. First, the sharp cutoff at large
splittings in the numerical data relative to the Porter-Thom
distribution in Fig. 9 is a finite-\ effect. This can be under
stood as follows. Let the Poincare´ surface of section have
areaN in units of h. Then the expected squared overlap^s&
of an eigenstate with a Gaussian test state will be 1/N, be-
cause the test state covers an areah in phase space while th
eigenstate is, on average, spread evenly over the entire p
space. Now the cutoff arises from the fact that no matter h
scarred or otherwise localized the eigenstate is, its ove
with a test state cannot be greater than unity. Sos,1 by
construction, ors/^s&,N. Thus the cutoff increases to infin
ity in the semiclassical limit~i.e., as\ tends to zero!, even
while ^s& itself is decreasing. Assuming random matr
theory, the modified form of the Porter-Thomas distributi
for finite N can be computed. One takes an ensemble
randomly oriented vectors inN dimensions, normalizes them

FIG. 10. Plot of rescaled splittingDE/e2S versus mean leve
spacingD.
4-7



f
to
i

ri-

r-
e
u
n

s

of

W. E. BIES, L. KAPLAN, AND E. J. HELLER PHYSICAL REVIEW E64 016204
so they lie on the unit sphere, and takesN times the square o
thez component. This quantity has mean 1 and a sharp cu
at N. The Porter-Thomas distribution is recovered in the lim
N→`. For an analytical form for the Porter-Thomas dist
bution for finite N, see Brodyet al. in Ref. @18#, especially
their Eq.~7.10!. In Fig. 11 we see that the modified Porte
Thomas distribution forN56, corresponding roughly to th
effective dimension of our Hilbert space, reproduces the c
off in the numerical data of Fig. 9. The scarring correctio
io
re
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ct
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gi
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th

01620
ff
t

t-
s

~extra splittings at large and smalls/^s& with fewer splittings
around s/^s&51) relative to the modified Porter-Thoma
distribution are still present in Fig. 11.

A second test of the effect of finite\ is to repeat the
calculation at different values of\. Since we are near the
computational limit already, we consider only the case
larger \. This is done by scaling the coordinates (x,y)
→(x8,y8)5(cx,cy), 0,c,1. Under this transformation
the potential becomes
V~x8,y8!5
x84

c4 2
x0

2x82

c2 1
ay82

c2 1
lx82y82

c4
1(

i
bi exp$2@~x82cxi !

21~y82cyi !
2#/~cs i !

2%, ~7!
e

vi-
of

e,

ng
for
-
ns

las-
ot

ua-
ic
ngs

aller
of
of
ic-
ns
y-
lope

e.
r-
the

and
the
ori-
at

ical
e

while the kinetic energy remains

2
]2

]x82 2
]2

]y82 ~8!

since the momenta are not affected by the transformat
The complete transformation of the Hamiltonian may be
garded as the product of three transformations:~i! the scaling
of coordinates by a factor ofc1/2 and momenta by a factor o
c21/2, which does not change the quantum mechanics,~ii !
scaling both coordinates and momenta by a common fa
of c1/2 while also replacing the HamiltonianH by cH, which
preserves the classical mechanics exactly but is not area
serving, and thus affects the quantum mechanics by chan
the effective value of\, and~iii ! scaling the Hamiltonian by
a factor of 1/c, which trivially rescales the spectrum bac
into the original range. The reason we use this transfor
tion is to keep the classical mechanics, all the periodic orb
their stability properties, etc. unchanged as we change

FIG. 11. Distribution of rescaled splittings for the numeric
data with s50.5, histogram; Porter-Thomas distribution wi
finite-\ correction forN56, dashed line.
n.
-

or

re-
ng

a-
s,
he

effective value of\, so the results for different values of th
effective\ ~which scales as 1/c) are directly comparable.

For c50.8 we find the same oscillations observed pre
ously in the distribution of rescaled splittings as a function
energy, only now there are four peaks in the range fromE
5250 to E50 compared to the five that we saw befor
corresponding to a larger effective value of\ in the new
system. The distribution of splittings is given by the scarri
corrections to the modified Porter-Thomas distribution
N54 now, compared toN56 above. Thus, the same con
clusions continue to hold but with the expected modificatio
for larger \. This indicates that atc51 we are far enough
into the semiclassical regime to see characteristic semic
sical behavior for the locations of the scarring peaks, if n
for their precise heights.

IV. CONCLUSIONS

We have demonstrated that scarring on the real contin
tion of the optimal tunneling path, if it is an unstable period
orbit, enhances tunneling and thus leads to larger splitti
between the symmetric and antisymmetric inx eigenfunc-
tions at energies near the scarring energies~likewise, anti-
scarring in between the scarring energies leads to sm
splittings!. The energy dependence of the distribution
splittings displays quantization in action, and the shape
the smooth envelope is roughly consistent with the pred
tion of scar theory, though the magnitude of the oscillatio
is not quantitatively predicted by the simple linearized d
namics; a better understanding of the shape of the enve
would require extending scar theory to the nonlinear regim
Also, the distribution of splittings is approximately Porte
Thomas with scarring corrections, as we would expect on
basis of scar theory combined with the theory of Creagh
Whelan, discussed in Sec. I. We do not find, however,
expected dependence on the Lyapunov exponent of the h
zontal periodic orbit. This is presumably due to the fact th
our calculations do not probe very far into the semiclass
limit, our well being only a few wavelengths across in th
transverse (y) direction. Finite-\ effects cut off the far tail of
the splitting distribution at all energies.
4-8



se
ta
o-

te
o
its
ve

na
th
le
in
in
a

e
rix
o-
oes
ear,
sent

nce
art-
nd
s-

SCARRING EFFECTS ON TUNNELING IN CHAOTIC . . . PHYSICAL REVIEW E64 016204
According to Eqs.~2! and~3!, suitably generalized to the
chaotic double-well potential in two dimensions as discus
in Sec. I, the rescaled resonance widths in a single metas
well, the potential of which agreed with the double-well p
tential we are using forx,1x0 /A2, would have the same
distribution as the rescaled splittings we have compu
Thus, our results imply a nonstatistical distribution of res
nance widths in a chaotic metastable well. In view of
importance for chemical physics, this conclusion deser
further investigation.

Finally, we discuss the prospects for many-dimensio
systems. If there exists an unstable periodic orbit near
real continuation of the optimal tunneling path in a doub
well or metastable well, scarring and antiscarring will aga
play a role. The only question is whether the degree of
stability is small enough for scarring to be important; for
F.

s

ha

.

rd

T

.

J.

01620
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ble
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Lyapunov exponentl large compared to unity the short-tim
envelope approaches the uniform limit of random mat
theory. However, as long as the sum of all instability exp
nents in directions transverse to the reaction coordinate d
not become large, scarring effects are expected to app
just as in the two-dimensional case discussed in the pre
paper.

ACKNOWLEDGMENTS

This research was supported by the National Scie
Foundation under Grant No. CHE-9610501, by the Dep
ment of Energy under Grant No. DE-FG03-00-ER41132, a
by the Institute for Theoretical Atomic and Molecular Phy
ics at the Harvard-Smithsonian Observatory.
m.
.

y,
@1# R. Hernandez, W. H. Miller, C. Bradley Moore, and W.
Polik, J. Chem. Phys.99, 950 ~1993!; W. H. Miller, R. Her-
nandez, C. B. Moore, and W. F. Polik,ibid. 93, 5657~1990!;
P. J. Robinson and K. A. Holbrook,Unimolecular Reactions
~Wiley-Interscience, New York, 1972!; J. I. Steinfeld, J. S.
Francisco and W. L. Hase,Chemical Kinetics and Dynamic
~Prentice Hall, Englewood Cliffs, N.J., 1989!.

@2# J. E. Lynn,The Theory of Neutron Resonance Reactions~Clar-
endon, Oxford, 1968!.

@3# C. E. Porter and R. G. Thomas, Phys. Rev.104, 483 ~1956!.
@4# L. P. Kouwenhoven, C. M. Marcus, P. L. Mceuen, S. Taruc

R. M. Westervelt, and N. S. Wingreen, inMesoscopic Electron
Transport, edited by L. L. Sohn, L. P. Kouwenhoven, and G
Schön ~Kluwer, Dordrecht, 1997!, pp. 105–214; C. M. Mar-
cus, R. M. Westervelt, P. F. Hopkins, and A. C. Gossa
Chaos3, 643 ~1993!.

@5# T. M. Fromhold, L. Eaves, F. W. Sheard, M. L. Leadbeater,
J. Foster, and P. C. Main, Phys. Rev. Lett.72, 2608~1994!; P.
B. Wilkinson, T. M. Fromhold, L. Eaves, F. W. Sheard, N
Miura, and T. Takamasu, Nature~London! 380, 608~1996!; T.
M. Fromhold, P. B. Wilkinson, F. W. Sheard, L. Eaves,
Miao, and G. Edwards, Phys. Rev. Lett.75, 1142~1995!.

@6# E. J. Heller, Phys. Rev. Lett.53, 1515~1984!.
@7# L. Kaplan and E. J. Heller, Phys. Rev. E59, 6609~1999!.
,

,

.

@8# D. Bohm,Quantum Theory~Prentice-Hall, New York, 1951!,
pp. 264–295.

@9# S. C. Creagh and N. D. Whelan, Ann. Phys.~N.Y.! 272, 196
~1999!.

@10# S. C. Creagh and N. D. Whelan, Phys. Rev. Lett.84, 4084
~2000!.

@11# D. O. Harris, G. G. Engerholm, and W. D. Gwinn, J. Che
Phys.43, 1515~1965!; for more recent work see J. V. Lill, G
A. Parker, and J. C. Light, Chem. Phys. Lett.89, 483~1982!; J.
C. Light, I. P. Hamilton, and J. V. Lill, J. Chem. Phys.82,
1400 ~1985!.

@12# L. Kaplan and E. J. Heller, Ann. Phys.~N.Y.! 264, 171~1998!;
see also the review: L. Kaplan, Nonlinearity12, R1 ~1999! and
references therein.

@13# O. Agam and S. Fishman, Phys. Rev. Lett.73, 806 ~1994!; O.
Agam and S. Fishman, J. Phys. A26, 2113~1993!.

@14# L. Kaplan, Phys. Rev. Lett.80, 2582~1998!.
@15# A. I. Schnirelman, Usp. Mat. Nauk29, 181~1974!; Y. Colin de

Verdiere, Commun. Math. Phys.102, 497 ~1985!; S. Zelditch,
Duke Math. J.55, 919 ~1987!; S. Zelditch and M. Zworski,
Commun. Math. Phys.175, 673 ~1996!.

@16# S. C. Creagh and N. D. Whelan, Phys. Rev. Lett.77, 4975
~1996!.

@17# L. Kaplan, Phys. Rev. E59, 5325~1999!.
@18# T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pande

and S. S. M. Wong, Rev. Mod. Phys.53, 385 ~1981!.
4-9


